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Abstract. Minty Variational Inequalities (for short, Minty VI) have proved to characterize
a kind of equilibrium more qualified than Stampacchia Variational Inequalities (for short,
Stampacchia VI). This conclusion leads to argue that, when a Minty VI admits a solution
and the operator F admits a primitive f (that is F =f ′), then f has some regularity prop-
erty, e.g. convexity or generalized convexity. In this paper we put in terms of the lower Dini
directional derivative a problem, referred to as Minty VI(f ′ ,K), which can be considered a
nonlinear extension of the Minty VI with F =f ′ (K denotes a subset of R

n). We investigate,
in the case that K is star-shaped, the existence of a solution of Minty VI(f ′ ,K) and increas-
ing along rays starting at x∗ property of (for short, f ∈ IAR(K, x∗)). We prove that Minty
VI(f ′ ,K) with a radially lower semicontinuous function f has a solution x∗ ∈ kerK if and
only if f ∈ IAR(K, x∗). Furthermore we investigate, with regard to optimization problems,
some properties of increasing along rays functions, which can be considered as extensions
of analogous properties holding for convex functions. In particular we show that functions
belonging to the class IAR(K, x∗) enjoy some well-posedness properties.

Key words: existence of solutions, generalized convexity, Minty variational inequality,
star-shaped sets, well-posedness

1. Introduction

Variational Inequalities provide a very general and suitable mathemati-
cal model for a wide range of problems, in particular equilibrium prob-
lems (Baiocchi and Capelo (1984); Kinderlehrer and Stampacchia (1980);
Stampacchia (1960)). Minty Variational Inequalities (for short, Minty VI)
(Minty (1967)), is the problem of finding a vector x∗ ∈K, such that:

Minty VI(F,K) 〈F(y), x∗ −y〉�0, ∀y ∈K

where F :Rn →R
n,K ⊆R

n is nonempty and 〈·, ·〉 denotes the inner product
defined on R

n. In particular the case where the function F has a primitive
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f : R
n → R, defined (and differentiable) on an open set containing K (i.e.

the problem Minty VI(f ′,K)) has been widely studied, mainly in relation
with the minimization of the function f over the set K (see e.g. (Kinder-
lehrer and Stampacchia (1980))). In (Giannessi (1997)) a vector extension
of Minty VI(f ′,K) is introduced and related to optimality.

Throughout the paper f denotes a real function defined on an open set
containing K. For such a function, the lower Dini directional derivative of
f at the point x ∈K in the direction u∈R

n is defined as an element of R :=
R∪{±∞} by:

f ′ (x, u)= lim inf
t→+0

f (x + tu)−f (x)

t
.

Now we introduce the following problem:

Minty VI(f ′ ,K) f ′ (y, x∗ −y)�0, ∀y ∈K.

The problem is to find x∗ ∈ K for which the inequalities in Minty
VI(f ′ ,K) are satisfied. This problem obviously reduces to Minty VI(f ′,K)

when f is differentiable on an open set containing K.
The main result of the paper is that, when K is star-shaped, x∗ ∈ kerK

and f is radially lower semicontinuous in K on the rays starting at x∗,
the point x∗ is a solution of Minty VI(f ′ ,K) if and only if f is increas-
ing along such rays (for short, IAR). This condition means that the level
sets of f are star-shaped and can be regarded as a convexity-type condi-
tion (recall for comparison that, by definition, a function is quasi-convex if
and only if its level sets are convex). Therefore we see that IAR functions
naturally arise when dealing with Minty variational inequalities.

Moreover, we show that the class of IAR functions has relevant prop-
erties with regard to optimization problems and as it happens for con-
vex functions, relations with well-posedness can be established. The latter
allows to argue that, when Minty VI(f ′,K) has a solution (or more gen-
erally Minty VI(f ′ ,K) is solvable), the primitive optimization problem has
some well-posedness property.

2. The Class of IAR Functions

In this section we recall the notion of IAR function and we investi-
gate some basic properties of this class of functions. Such properties
can be viewed as extensions of analogous properties holding for convex
functions.
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DEFINITION 1.

(i) Let K be a nonempty subset of R
n. The set kerK consisting of all x ∈K

such that (y ∈K, t ∈ [0,1])�⇒x + t (y −x)∈K is called the kernel of K.
(ii) A nonempty set K is star-shaped if kerK =∅.

In the following we will use the abbreviation st-sh for the word star-shaped.
It is known (see e.g. (Rubinov (2000))) that the set kerK is convex for an arbi-
trary st-sh set K. We will assume, by definition, that the empty set is st-sh.

DEFINITION 2. A function f defined on R
n is called increasing along

rays at a point x∗ (for short, f ∈ IAR(x∗)) if the restriction of this function
on the ray Rx∗,x ={x∗ +αx|α �0} is increasing for each x ∈R

n. (A function
g of one real variable is called increasing if t2 � t1 implies g(t2)�g(t1).)

DEFINITION 3. Let K ⊆ R
n be a st-sh set and x∗ ∈ kerK. A function

f defined on K is called increasing along rays at x∗ (for short, f ∈
IAR(K, x∗)), if the restriction of this function on the intersection Rx∗,x ∩K

is increasing, for each x ∈K.

When n=1, f ∈IAR(K, x∗) if and only if it is quasi-convex with a global
minimum over K at x∗. The following example shows that when n�2 and
K is a convex set, the class of functions f ∈ IAR(K, x∗) is broader then the
class of quasi-convex functions with a global minimum at x∗.

EXAMPLE 1. Let f (x1, x2) = x2
1x

2
2 and K = R

2. Then, for x∗ = (0,0) it is
easily seen that f ∈ IAR(K, x∗), but f is not quasi-convex.

We consider the following problem:

P(f,K) min f (x), x ∈K ⊆R
n.

A point x∗ ∈ K is a (global) solution of P(f,K) when f (x) − f (x∗) �
0, ∀x ∈K. The solution is strict if f (x)−f (x∗)>0, ∀x ∈K \ {0} . We will
denote by argmin(f,K) the set of solutions of P(f,K). Local solutions of
P(f,K) have a clear definition ad we omit it.

The next results give some basic properties of functions which are
increasing along rays.

PROPOSITION 1. Let K ⊆R
n be a st-sh set, x∗ ∈kerK and f ∈IAR(K, x∗).

Then:

(i) x∗ is a solution of P(f,K);
(ii) No point x ∈K, x =x∗, can be a strict local solution of P(f,K).

(iii) x∗ ∈ker arg min(f,K).
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Proof.

(i) Let x ∈ K and set z(t) = x∗ + t (x − x∗), t ∈ [0,1]. Since x∗ ∈ kerK,
then z(t)∈K, ∀t ∈ [0,1] and since f ∈ IAR(K, x∗), we have f (z(t))�
f (x∗) = f (z(0)), ∀t ∈ [0,1] and in particular f (z(1)) = f (x) � f (x∗).
Since x ∈K is arbitrary, then x∗ is a global minimizer of f over K.

(ii) Let x and z(t) as above. Since f ∈ IAR(K, x∗), it easily follows
f (z(t))�f (x)=f (z(1)), ∀t ∈ [0,1]. If U is an arbitrary neighborhood
of x, then for t ‘near enough’ to 1, we have z(t)∈U and so x cannot
be a strict local minimizer for f over K.

(iii) Let x ∈ argmin(f,K), x = x∗. Since z(t) ∈ K, we have f (z(t)) �
f (x), ∀t ∈ [0,1] and readily follows that for every t ∈ [0,1], z(t) ∈
argmin(f,K).

The next Proposition can be found in (Zaffaroni (2001)).

PROPOSITION 2. Let K ⊆ R
n be a st-sh set, x∗ ∈ kerK and f be a func-

tion defined on K. Then f ∈ IAR(K, x∗) if and only if for each c ∈ R with
c�f (x∗), we have x∗ ∈ker lev�cf .

3. Minty Variational Inequalities and IAR Functions

In this section we prove that a radially lower semicontinuous function f

belongs to the class IAR(K, x∗) if and only if x∗ solves Minty VI(f ′ ,K).

DEFINITION 4. Let K ⊆ R
n, x∗ ∈ kerK and let f be a function defined

on an open set containing K. The function f is said to be radially lower
semicontinuous in K along rays starting at x∗, if for each x ∈K, the restric-
tion of f on the interval Rx∗,x ∩K is lower semicontinuous.

We will use the abbreviation f ∈ RLSC(K, x∗) to denote that f satisfies
the previous definition.

THEOREM 1 (Mean value theorem). Let x∗ ∈kerK, f ∈RLSC(K, x∗), y ∈
K, and t >0 such that y + t (x∗ −y)∈K. Then there exists a number α∈]0, t ],
such that:

f (y + t (x∗ −y))−f (y)� tf ′ (y +α(x∗ −y), x∗ −y).

Proof. Let h(s) = f (y + s(x∗ − y)) − s
t
[f (y + t (x∗ − y)) − f (y)]. Then the

mean value inequality is equivalent to the existence of a number α ∈]0, t ]
such that:
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h (α) := lim inf
r→+0

h(α + r)−h(α)

r
.

Clearly we can write y +s(x∗ −y)=x∗ + (1−s)(y −x∗) and hence h is lower
semicontinuous. According to Weierstrass Theorem, it attains its global
minimum at some point t̂ ∈ [0, t ]. Indeed we have h(0) = h(t) = f (y) and
therefore if the global minimum is achieved for t̂ =0 it is also achieved for
t̂ = t . Hence, for α = t̂ we have h (α)�0 and the Theorem is proved.

THEOREM 2. Let K ⊆R
n be a st-sh set and x∗ ∈kerK.

(i) If x∗ solves Minty VI(f ′ ,K) and f ∈ RLSC(K, x∗), then
f ∈ IAR(K, x∗).

(ii) Conversely, if f ∈IAR(K, x∗), then x∗ is a solution of Minty VI(f ′ ,K).

Proof. (i) Let x∗ be a solution of Minty VI(f’,K), y ∈K and y + t2(x
∗ −

y), y + t1(x
∗ − y) be points in Rx∗,x ∩K, with t2 >t1 � 0. Applying the pre-

vious Theorem we have:

f (y + t2(x
∗ −y))−f (y + t1(x

∗ −y))

� (t2 − t1)f
′ (y +α(x∗ −y), x∗ −y)�0,

with α ∈]t1, t2]. It is easily seen that this proves f ∈ IAR(K, x∗)
(ii) Assume that f ∈ IAR(K, x∗) and let y ∈ K. For every t ∈ [0,1], we

have: f (y + t (x∗ −y))=f (x∗ + (1− t)(y −x∗))�f (y) and hence:

f (y + t (x∗ −y))−f (y)

t
�0.

Taking lim inf as t →+0, we obtain that x∗ solves Minty VI(f′, K).

In the previous Theorem the assumption f ∈ RLSC(K, x∗) appears in
only one of the two opposite implications. A natural question arises,
whether it cannot be dropped at all. The next examples give a negative
answer to this question.

EXAMPLE 2. Let K = R, x∗ = 0 and consider the function f : R → R

defined as:

f (x)=
{

1, ifx =2
3, ifx =2

Then f /∈ RLSC(k, x∗) and it holds f ′ (y, x∗ − y) � 0,∀y ∈ R, but f /∈
IAR(K, x∗).
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EXAMPLE 3. Define the function f : R → R by f (x) = 0 for x = 0 or x

irrational, and f (x)=−q for x =0 rational with x =p/q, q >0 and p and q

mutually prime. The function f is not lower semicontinuous and the Dini
derivatives are f ′ (x, u)=−∞ for each x ∈R and u∈R\{0}. Consequently,
each point x∗ ∈R is a solution of Minty VI(f ′ ,K). At the same time f has
no global minimizers. In particular x∗ =0 is among the solutions of Minty
VI(f ′ ,K), which is a global maximizer of f . Even more, while having no
global minimizers, there is a dense in R set of points, namely the set of the
irrational numbers, each of which is both a solution of Minty VI(f ′ ,K)

and a global maximizer of f .

COROLLARY 1. Let x∗ ∈ kerK and let f ∈ RLSC(K, x∗). If x∗ solves
MintyVI(f ′ ,K), then x∗ solves P(f,K).

Proof. It is immediate from the previous Theorem and Proposition 1.

REMARK 1. The previous Corollary extends a classical result which
states that if K is a convex set, any solution of Minty VI(f ′,K) solves
P(f,K).

COROLLARY 2. If x∗ ∈kerK and f is differentiable on an open set contain-
ing K, then x∗ solve Minty VI(f ′,K) if and only if f ∈ IAR(K, x∗).

4. Minty Variational Inequalities and Well-posedness

In this section we show that functions ∈ IAR(K, x∗) enjoy some well-
posedness properties, analogously to convex functions.

DEFINITION 5.
(i) A sequence xk ∈ K is a minimizing sequence for P(f,K), when

f (xk)→ infK f (x).
(ii) A sequence xk is a generalized minimizing sequence for P(f, k) when:

f (xk)→ inf
K

f (x), dist(xk,K)→0

(here dist(x,K) denotes the distance from the point x to the set K.)

DEFINITION 6.
(i) Problem P(f,K) is Tykhonov well-posed When it admits a unique

solution x∗ and every minimizing sequence for P(f,K) converges to
x∗.
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(ii) Problem P(f,K) is Levitin-Polyak well-posed when it admits a unique
solution x∗ and every generalized minimizing sequence for P(f,K)

converges to x∗.

Let us denote with argmin(f, k) the set of solutions of P(f,K) and con-
sider the sets:

Lf (ε) :={x ∈K|f (x)� inf
K

f (x)+ ε}

and

Lf
s (ε) :={x ∈K|dist(x,K)� ε, f (x)� inf

K
f (x)+ ε}.

We recall the following result (see e.g. (Dontchev and Zolezzi (1993))).

THEOREM 3.
(i) If P(f,K) is Tykhonov well-posed, then diam Lf (ε)→0 as ε →0.

(ii) Let f be lower semicontinuous and bounded from below on K. If
limε→0 diamLf (ε)=0, then P(f,K) is Tykhonov well-posed.

(iii) If K is closed and f is lower semicontinuous and bounded from
below on K, then diam L

f
s (ε) → 0 as ε → 0 implies that P(f,K) is

Levitin-Polyak well-posed.

DEFINITION 7. Problem P(f,K) is said Tykhonov well-posed in the
generalized sense when argmin(f,K) = ∅ and every minimizing sequence
for P(f,K) has some subsequence that converges to an element of arg-
min(f,K).

Of course, P(f,K) is Tykhonov well-posed if and only if argmin(f,K)

is a singleton and P(f,K) is well posed in the generalized sense.

DEFINITION 8. Problem P(f,K) is stable when argmin (f,K) = ∅ and
for every sequence xk minimizing for P(f,K) we have:

dist[xk,argmin(f,K)]→0.

The following results extend to IAR functions some classical well-posed-
ness properties of convex functions.

THEOREM 4. Let K be a closed subset of R
n, x∗ ∈ kerK and let f ∈

IAR(K, x∗) be a lower semicontinuous function. If argmin (f,K) is bounded,
then P(f,K) is stable.



492 G.P. CRESPI ET AL.

Proof. Let xk ∈K be a minimizing sequence for P(f,K), but, by contra-
diction, assume that dist[xk,argmin(f,K)] � 0. Then, for infinitely many k

we have:

xk /∈argmin(f,K)+ δB,

for some positive δ (here B denotes the open unit ball in R
n). Without loss

of generality, we can assume that this holds for every k. If xk is a bounded
sequence, one can think that xk converges to a point x̄ /∈argmin(f,K), but
this is absurdo.

We shall therefore assume xk is unbounded. If this holds, ∀k there exists
tk ∈ (0,1) such that yk = tkx

∗ + (1− tk)x
k ∈ bd [argmin (f,K)+ δB] (here bd

A denotes the boundary of the set A). Since argmin(f,K) is bounded and
K is closed, one can think that yk → ȳ ∈ K with ȳ /∈ argmin(f,K). Hence
∀ε >0 and for k ‘large enough’, since f ∈ IAR(K, x∗), we get:

f (x∗)�f (yk)�f (xk)� inf
K

f (x)+ ε =f (x∗)+ ε

and the lower semicontinuity of f gives the absurdo f (x∗)=f (ȳ).

COROLLARY 3. Let K be a closed subset of Rn, x∗ ∈ ker K,f ∈ IAR
(K, x∗) be lower semi and argmin (f,K) be compact. Then P(f,K) is
Tykhonov well posed in the generalized sense.

Proof. It easily follows observing that when argmin (f, K) is compact,
then stability is equivalent to Tykhonov generalized well-posedness.

COROLLARY 4. Let K be a closed subset of Rn, x∗ ∈ kerK and f ∈
IAR (K, x∗) be lower semicontinuous. If argmin (f,K) is a singleton, then
P(f,K) is Tykhonov well-posed.

The assumption that argmin (f,K) is bounded is essential to prove The-
orem 4, as it is shown in the following example.

EXAMPLE 4. Let K = R2
+, x∗ = (0,0) and consider the function therein

defined:

f (x, y)=
{

0, if (x, y)= (0, y)

t (x̄ −1)2, if (x, y)= (
t x̄, t 2−x̄

x̄−1

)
, for t >0,1<x̄ �2.

Clearly, f ∈ IAR (K, x∗) and argmin (f,K)={(x, y)∈R2
+|x =0}.P (f,K) is

not stable, since the sequence (1 + 1
n
, n− 1) is minimizing, but its distance

from argmin (f,K) does not tend to 0.
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LEMMA 1. Let x∗ ∈ ker K. Then dist (·,K)∈ IAR (x∗).

Proof. Without loss of generality we assume x∗ =0. Consider a point x ∈
Rn and two positive scalars t1, t2, with t2 � t1 and set:

dist(t2x,K)= inf
y∈K

‖y − t2x‖= l.

Consider a sequence yk ∈K, such that ‖yk − t2x‖� l+1/k. Since t1
t2
yk ∈K,

we have:

dist(t1x,K)� t1

t2
‖yk − t2x‖� t1

t2
(l +1/k)� l +1/k

and for k →+∞ we get dist(t1x,K)� l.

THEOREM 5. Assume that K is a closed set, x∗ ∈ ker K, f is a lower semicon-
tinuous continuous function and there exists τ > 0 such that f ∈IAR(Kτ , x

∗),
where Kτ =K + τB. If P(f, K) is Tykhonov well-posed, then diam L

f
s (ε)→0,

as ε →0.

Proof. Ab absurdo, assume that diam L
f
s (ε) → 0. Hence there exists

a positive number δ such that ∀ε > 0 one can find a point x(ε) with
dist(x,K) � ε and f (x(ε)) � f (x∗) + ε, but x(ε) ∈ x∗ + δB. Let ε = 1

k
, xk :=

x(ε) and assume first that xk is bounded. Hence we can assume that xk

converges to some x̄. Since dist(xk,K) � 1
k

and K is closed, then x̄ ∈ K.
Furthermore we have f (xk)�f (x∗)+ 1

k
and recalling that f is lower semi-

continuous and that x∗ minimizes f over K, we get f (x̄) = f (x∗), which
contradicts the assumption of Tykhonov well-posedness.

Let assume, therefore, xk is unbounded. Hence for k ‘large enough’, xk ∈
Kτ and we can find δ > 0 such that xk ∈ x∗ + δB. Let now yk = tkx

k + (1 −
tk)x

∗ ∈ bd(x∗ +δB), for t ∈ (0,1). Since x∗ ∈ kerK, then dist (·,K)∈IAR(x∗)
and from:

dist(yk,K)�dist (xk,K)� 1
k
,

we get dist (yk,K) → 0. Since f ∈IAR(Kτ , x
∗), for k ‘large enough’ we

have:

f (x∗)�f (yk)�f (xk)�f (x∗)+ 1
k

and hence yk is a generalized minimizing sequence. Now the well-posedness
is contradicted since we can assume yk → ȳ ∈K, ȳ =x∗ and the lower semi-
continuity of f implies f (ȳ)=f (x∗).
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COROLLARY 5. Under the hypotheses of Theorem 5, P(f,K) is Levitin-
Polyak well-posed.

Proof. It follows immediately from iii) of Theorem 3.
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